10 - Step Design of Post-Tensioned Floors

Dr Bijan O Aalami
Professor Emeritus,
San Francisco State University
Principal, ADAPT Corporation; bijan@PT-structures.com
www.adaptsoft.com

301 Mission Street
San Francisco, California
High Seismic Force Region

Four Seasons Hotel; Florida
High Wind Force Region

Residential/Office Post-Tensioned Building in Dubai
Column supported multistory building
Two-way flat slab construction

Multi-level parking structures
One-way beam and slab design

Hybrid Construction
Post-tensioned podium slab supporting light framed structure above

Post-Tensioned ground supported slab (SOG) is the largest application of post-tensioning in USA

Santana Row, San Jose, California
Post-Tensioned Mat Foundation Using Unbonded Tendons

Fortaleza, Brazil

Post-Tensioned Mat Foundation Using Grouted Tendons

KSA

Post-Tensioning Systems
Unbonded System

Example of a Floor System using the Unbonded Post-tensioning System

(a) STRAND

(b) TENDON

(c) ANCHORAGE ASSEMBLY
An example of a grouted system hardware with flat duct

Preliminary Considerations

Design of Post-Tensioned Floors

- Dimensions (sizing)
 - Optimum spans; optimum thickness
- Structural system
 - One-way/two-way; slab band/beam
- Boundary conditions; connections
 - Service performance; strength condition

PT amount in service condition is governed mostly by:
- Hypothetical tensile stresses
- Tendon spacing

Optimum spans: between 25 ft – 30 ft

Span/thickness ratios
- 40 for interior
- 35 for exterior with no overhang
Preliminary Considerations
Design of Post-Tensioned Floors

- One-way and two-way systems
 - Skeletal Systems share load
 - Slab systems may not share load, depending on reinforcement layout

(a) ONE-WAY SKELETAL SYSTEM

(b) TWO-WAY SKELETAL SYSTEM

Skeletal System

Preliminary Considerations
Design of Post-Tensioned Floors

- One-way and two-way systems
 - Skeletal Systems share load
 - Slab systems may not share load, depending on reinforcement layout

Capacity required is for 100% of load in each direction, if reinforcement is placed along AD, and AC

(b) BEAMS ON FOUR COLUMNS

Structural system
- One-way/two-way; slab band

\[h \leq 2t \quad \text{and} \quad b \geq 3h \]

SLAB BAND

Slab band is treated as part of a two-way system. One-way shear design provisions meant for beams do not apply to slab bands
Preliminary Considerations
Design of Post-Tensioned Floors

- Selection of boundary conditions; connections
 - Service performance
 - Strength performance

Detailing for service performance, such as the one shown below is to mitigate cracking from shortening of slab.

Assumption of releases at connections, or reduced stiffness for selected members is made prior to analysis to achieve a more economical design.

In the following, the assignment of reduced stiffness for the uppermost columns, or hinge assumption at connection is not uncommon.

Subdivide the floor along line of columns into design strips

Subdivide the structure into design strips in two orthogonal directions (Nahid slab)

Subdivide the floor along line of columns into design strips

Subdivide the floor along line of columns into design strips

Assumption of releases at connections, or reduced stiffness for selected members is made prior to analysis to achieve a more economical design.

In the following, the assignment of reduced stiffness for the uppermost columns, or hinge assumption at connection is not uncommon.

Subdivide the floor along line of columns into design strips

Subdivide the floor along line of columns into design strips

Assumption of releases at connections, or reduced stiffness for selected members is made prior to analysis to achieve a more economical design.

In the following, the assignment of reduced stiffness for the uppermost columns, or hinge assumption at connection is not uncommon.

Subdivide the floor along line of columns into design strips

Subdivide the floor along line of columns into design strips

Assumption of releases at connections, or reduced stiffness for selected members is made prior to analysis to achieve a more economical design.

In the following, the assignment of reduced stiffness for the uppermost columns, or hinge assumption at connection is not uncommon.

Subdivide the floor along line of columns into design strips

Subdivide the floor along line of columns into design strips

Assumption of releases at connections, or reduced stiffness for selected members is made prior to analysis to achieve a more economical design.

In the following, the assignment of reduced stiffness for the uppermost columns, or hinge assumption at connection is not uncommon.

Subdivide the floor along line of columns into design strips

Subdivide the floor along line of columns into design strips

Assumption of releases at connections, or reduced stiffness for selected members is made prior to analysis to achieve a more economical design.

In the following, the assignment of reduced stiffness for the uppermost columns, or hinge assumption at connection is not uncommon.

Subdivide the floor along line of columns into design strips

Subdivide the floor along line of columns into design strips

Assumption of releases at connections, or reduced stiffness for selected members is made prior to analysis to achieve a more economical design.

In the following, the assignment of reduced stiffness for the uppermost columns, or hinge assumption at connection is not uncommon.

Subdivide the floor along line of columns into design strips

Subdivide the floor along line of columns into design strips

Assumption of releases at connections, or reduced stiffness for selected members is made prior to analysis to achieve a more economical design.

In the following, the assignment of reduced stiffness for the uppermost columns, or hinge assumption at connection is not uncommon.

Subdivide the floor along line of columns into design strips

Subdivide the floor along line of columns into design strips

Assumption of releases at connections, or reduced stiffness for selected members is made prior to analysis to achieve a more economical design.

In the following, the assignment of reduced stiffness for the uppermost columns, or hinge assumption at connection is not uncommon.

Subdivide the floor along line of columns into design strips

Subdivide the floor along line of columns into design strips

Assumption of releases at connections, or reduced stiffness for selected members is made prior to analysis to achieve a more economical design.

In the following, the assignment of reduced stiffness for the uppermost columns, or hinge assumption at connection is not uncommon.

Subdivide the floor along line of columns into design strips

Subdivide the floor along line of columns into design strips

Assumption of releases at connections, or reduced stiffness for selected members is made prior to analysis to achieve a more economical design.

In the following, the assignment of reduced stiffness for the uppermost columns, or hinge assumption at connection is not uncommon.

Subdivide the floor along line of columns into design strips

Subdivide the floor along line of columns into design strips

Assumption of releases at connections, or reduced stiffness for selected members is made prior to analysis to achieve a more economical design.

In the following, the assignment of reduced stiffness for the uppermost columns, or hinge assumption at connection is not uncommon.

Subdivide the floor along line of columns into design strips

Subdivide the floor along line of columns into design strips

Assumption of releases at connections, or reduced stiffness for selected members is made prior to analysis to achieve a more economical design.

In the following, the assignment of reduced stiffness for the uppermost columns, or hinge assumption at connection is not uncommon.

Subdivide the floor along line of columns into design strips

Subdivide the floor along line of columns into design strips

Assumption of releases at connections, or reduced stiffness for selected members is made prior to analysis to achieve a more economical design.

In the following, the assignment of reduced stiffness for the uppermost columns, or hinge assumption at connection is not uncommon.
Subdivide floor along support lines in design strips in the orthogonal direction.

An important aspect of subdividing slab into design strips is that every point of the slab should be covered by a design strip. No portion of the slab should be left unassigned.

Design sections:
- Design sections extend over the entire design strip and are considered at critical locations, such as face of support and mid-span.

Design values:
- Actions, such as moments at each design section are reduced to a “single” representative value to be used for design.

559 k-ft is the area (total) of bending moment at face of support.

10-Steps Design of Post-Tensioned Floors:
1. Geometry and Structural System
2. Material Properties
3. Loads
4. Design Parameters
5. Actions due to Dead and Live Loads
6. Post-Tensioning
7. Code Check for Serviceability
8. Code Check for Strength
9. Check for Transfer of Prestressing
10. Detailing
Step 1
Geometry and Structural System

Select design strip and Idealize
- Extract; straighten the support line; square the boundary
- Model the slab frame with a row of supports above and below. This represents an upper level of multi-story concrete frame.
 - Assume rotational fixity at the far ends;
 - Assume roller support at the far ends

View of idealized slab-frame

Step 2
Material Properties

Concrete
- Weight 150 pcf
- 28 day cylinder 4000 – 6000 psi
- Elastic modulus 3,605 – 5,700 ksi
- Long-term deflection factor 2

Non-Prestressed reinforcement
- fy 60 ksi
- Elastic modulus 29,000 ksi

Prestressing
- Strand diameter 0.5 in
- Strand area 0.153 in2
- Ultimate strength 270 ksi
- Effective stress 175 ksi
- Elastic modulus 28,000 ksi

Step 3
Dead and Live Loads

Selfweight
- Based on member volume

Superimposed dead load
- Min (partitions) 20 psf

Live load
- Residential 40 psf
- Office 50 psf
- Shopping mall 75 psf
- Parking structure 40 psf

Lateral loads
- Wind
- Earthquake
Step 4
Design Parameters

- **Applicable code**
 - ACI 318-14
 - IBC 2015
 - Local codes, such as California Building Code (CBC 2011)

- **Cover for protection against corrosion**

- **Cover to rebar**
 - Not exposed to weather: 0.75 in
 - Exposed to weather: 2.00 in

- **Cover to tendon**
 - Not exposed to weather: 0.75 in
 - Exposed to weather: 1.00 in

Cover for fire resistivity

- **Identify “restrained” and “unrestrained panels.”**

<table>
<thead>
<tr>
<th></th>
<th>Aggregate Type</th>
<th>1 hr</th>
<th>1.5 hr</th>
<th>2 hr</th>
<th>3 hr</th>
<th>4 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrestrained</td>
<td>Carbonate</td>
<td>-</td>
<td>-</td>
<td>1.50</td>
<td>2.00</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Siliceous</td>
<td>-</td>
<td>-</td>
<td>1.50</td>
<td>2.00</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Lightweight</td>
<td>-</td>
<td>-</td>
<td>1.50</td>
<td>2.00</td>
<td>-</td>
</tr>
<tr>
<td>Restrained</td>
<td>Carbonate</td>
<td>-</td>
<td>-</td>
<td>0.75</td>
<td>1.00</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>Siliceous</td>
<td>-</td>
<td>-</td>
<td>0.75</td>
<td>1.00</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>Lightweight</td>
<td>-</td>
<td>-</td>
<td>0.75</td>
<td>1.00</td>
<td>1.25</td>
</tr>
</tbody>
</table>

- **For 2-hour fire resistivity**
 - Restrained: 0.75 in
 - Unrestrained: 1.50 in

- **Select post-tensioning system**
 - For corrosive environment use “encapsulated system.”
 - For non-corrosive environment, regular hardware may be used
Step 4
Design Parameters

- Allowable stresses for two-way systems

 - Service condition
 - Total (frequent) load case
 - Tension $6\sqrt{f_c'}$
 - Compression $0.6f_c'$
 - Sustained (quasi permanent) load case
 - Tension $6\sqrt{f_c'}$
 - Compression $0.45f_c'$

 - Initial condition
 - Tension $0.6\sqrt{f_c'}$
 - Compression $0.45f_c'$

Step 4
Design Parameters

- Allowable deflections (ACI 318)

 - For visual impact use total deflection
 - Span/240
 - Use camber, if necessary

 - Total deflection subsequent to installation of members that are likely to be damaged
 - Span/360

 - Immediate deflection due to live load
 - Span/480

 - Long-term deflection magnifier 2. This brings the total long-term deflection to 3.

Step 5
Actions due to Dead and Live Loads

- Analyze the design strip as a single level frame structure with one row of supports above and below, using

 - In-house simple frame program (Simple Frame Method; SFM); or

 - In-house Equivalent Frame Program (EFM); or

 - Specialty commercial software

- All the three options yield safe designs. But, each will give a different amount of reinforcement.

 - The EFM is suggested by ACI-318. To some extent, it accounts for biaxial action of the prototype structure.

 - 3D FEM software can improve optimization.
Step 6
Post-Tensioning

Selection of design parameters

- Selection of PT force and profile
- Effective force vs tendon selection option
 - Force selection option
- Calculation of balanced loads; adjustments for percentage of load balanced
- Calculation of actions due to balanced loads

Selection of PT force and profile

- Two entry value selections must be made to initiate the computations. Select precompression and % of DL to balance

Assume simple parabola for hand calculation

Force diagram of simple parabola

\[c/L = \left[\frac{\sqrt{b}}{a} / (1 + \sqrt{b}) \right] \]

\[w_b = 2 p \cdot c/d \]
STEP 6
Post-Tensioning

- Effective force per strand
 - Unbonded: 0.153x175 = 26.77 k/tendon
 - Bonded: 0.153x160 = 24.48 k/tendon

- Estimate initial force for each span using the assumed 150 psi precompression

Span 1
Force = (26.77x12x9.5)x150/1000 = 448.88 k
No of tendons = 448.88/26.77 = 16.77
assume 17 strands

Similarly the required strands are:

<table>
<thead>
<tr>
<th>Span</th>
<th>Required</th>
<th>Assumed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Span 1</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>Span 2</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Span 3</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Span 4</td>
<td>22</td>
<td>23</td>
</tr>
</tbody>
</table>

- Tendon selection

(a) Assumed tendon profile (ft UNO)

(b) Force diagram

Post Tensioning Profile and Force
STEP 6 Post-Tensioning

- Calculation of balanced loads

Span 1

- Calculation of balanced loads

 \[a = 3.73 \text{ in} \]
 \[b = 7.5 \text{ in} \]
 \[L = 30.00 \text{ ft} \]
 \[c = \left\{ \left[\frac{3.75}{7.5} \right]^{0.5} \right\} \frac{30}{1 + \left[\frac{3.75}{7.5} \right]^{0.5}} = 12.43 \text{ ft} \]
 \[P = 26.77 \text{ k/strand} \]
 \[w_b = \frac{2P}{a/c^2} = \frac{(2*26.77*3.75/12)}{12.43^2} = 0.108 \text{ klf per tendon} \]
 \[\text{Total uplift for 20 strands} = 20*0.108 = 2.16 \text{ klf} \]
 \[\% \text{ uplift} = \left(\frac{2.16}{3.826} \right) \times 100 = 56\% <60\% \]
 but considered acceptable

Span 2

- Calculation of balanced loads

 - Span 2 has 20 continuous tendons and 3 tendons from span 3 extending to span 2

 \[c = 0.20*32.75 = 6.55 \text{ ft} \]
 \[w_b = \left(\frac{2*3*26.77*3.75/12}{6.55} \right) = 1.17 \text{ k/lft} \]
 \[\text{Concentrated force at dead end} = \left(\frac{2*3*26.77*3.75/12}{6.55} \right) = 7.66 \text{ k} \]

Example of force from shift in member centroidal axis

\[M = P * \text{shift in centroid} = P \times (Y_{t-Left} - Y_{t-Right}) \]
\[P = 23*26.77 = 615.71 \text{ k;} \]
\[Y_{t-Left} = 4.75''; \quad Y_{t-Right} = 5.80'' \]
\[M = 615.71(4.75'' - 5.80'')/12 = -53.87 \text{ k-ft} \]
STEP 6

Post-Tensioning

- Check balanced loads for **static equilibrium**
 - Sum of forces must add up to zero
 - Sum of moments must add up to zero
 - Correct errors, if equilibrium is not satisfied

Comments:
Moments will be used for serviceability check. Reactions will be used for strength check.

STEP 6

Post-Tensioning

- Calculate **actions** from balanced loads
 - Obtain moments at face-of-supports and mid-spans
 - Note the reactions. The reactions are hyperstatic forces.

STEP 7

Code Check for Serviceability

- **ACI 318-14 requirements** for serviceability
 - Stress check
 - Minimum reinforcement
 - Deflection check.

- **Load combinations**
 - **Total (quasi permanent)**
 - $1.00DL + 1.00LL + 1.00PT$
 - **Sustained (frequent)**
 - $1.00DL + 0.30LL + 1.00PT$

- **Stress check**
Using engineering judgment, select the locations that are likely to be critical. Typically, these are at the face of support and for hand calculation at mid-span.

At each section selected for check, use the design actions applicable to the entire design section and apply them to the entire cross-section to arrive at code-intended hypothetical stresses used in code check.

$$\sigma = \frac{(M_D + M_L + M_{PT})}{S} + \frac{P}{A}$$

$S = I/Y_c$; $I =$ second moment of area of $; Y_c=$ distance to farthest tension fiber.
**STEP 6
Post-Tensioning**

- ACI 318-14 Minimum Reinforcement
 - Rebar over support is a function of geometry of the design strip and the strip in the orthogonal direction
 - Rebar in span is a function of the magnitude of the hypothetical tensile stress

In span, provide rebar if the hypothetical tensile stress exceeds $2\sqrt{f'_c}$

The amount of reinforcement A_s is given by:

$$A_s = \frac{N}{0.5f_y}$$

where N is the tensile force in tension zone

**STEP 7
Deflection Check**

- Read deflections from the frame analysis of the design strip for dead, live and PT; $(\Delta_{DL}, \Delta_{LL}, \text{and} \ \Delta_{PT})$.
- Make the following load combinations and check against the allowable values for each case
 - Total Deflection
 $$(1 + 2)(\Delta_{DL} + \Delta_{PT} + 0.3 \Delta_{LL}) + 0.7 \Delta_{LL} < \text{span}/240$$
 This is on the premise of sustained load being 0.3 time the design live load. It is for visual effects; Provide camber to reduce value, where needed and practical
 - Immediate deflection from live load
 $$\Delta_{\text{Immediate}} = 1.00\Delta_L < \text{span}/480$$
 This check is applicable, where non-structural members are likely to be damaged. Otherwise, span/240 applies
 - Presence of members likely to be damaged from sustained deflection
 $$(1 + 2)(0.3 \Delta_{LL}) + 0.7 \Delta_{LL} < \text{span}/360$$

The above can be exceeded, if larger values are acceptable for the specific application

**STEP 8
Strength Check**

- Steps in strength check
 - Load combinations
 - Determination of hyperstatic actions
 - Calculation of design moments (Mu)
 - Calculate capacity/rebar for design moment Mu
 - Check for punching shear
 - Check/detail for unbalanced moment at support

- Load combinations
 $$U_1 = 1.2DL + 1.6LL + 1.0HYP$$
 $$U_2 = 1.4DL + 1.0HYP$$
 where, HYP is moment due to hyperstatic actions from prestressing

- Determination of Hyperstatic actions
 - Direct Method – based on reactions from balanced loads
 - Indirect Method – Using primary and post-tensioning moments
STEP 8 Strength Check

- Determination of Hyperstatic actions
 - **Direct Method** – based on reactions from balanced loads

 \[
 \begin{align*}
 &-62.675 & -13.808 & 3.628 & 22.708 & 74.433 \\
 &-3.654 & 4.580 & 0.198 & 1.451 & -2.575 \\
 \end{align*}
 \]

 (a) Reaction due to balanced loading (k; k-ft)

 (b) Hyperstatic moments (k-ft)

 Post-Tensioning Actions on Design Strip

- **A comment on capacity versus demand**
 - Post-tensioned elements possess both **positive** and **negative moment capacity** along the entire element’s length
 - Add rebar, where capacity falls short of demand
 - Find capacity and compare it with demand

 ![Moment Diagram](image)

 ![Conventional Reinforcement](image)

 ![Post-Tensioned](image)

 ![PT Moment Capacity](image)

- **For capacity calculation use the simplified relationship applicable to common building structures reinforced with unbonded tendons**

 \[
 f'c \geq 4000 \text{ psi } ; \quad P/A \leq 250 \text{ psi}
 \]

 \[
 c/d_t \leq 0.375 ; \quad d_t \text{ is distance from compression fiber to farthest tension rebar}
 \]

 Tendon Length \leq 125’ for single end stressing; if length \leq 250’ double end stressing

 \[
 f_{ps} \text{ is conservatively 215 ksi if span is less than 35 ft}
 \]

 \[
 f_{ps} \text{ is conservatively 195 ksi if span is greater than 35 ft}
 \]

- **Check for ductility**
 - Ductility is adequate, if \(c/d_t \leq 0.345 d_t \)
 - This condition guarantees that steel will yield, before concrete in compression crushes.
 - Add compression rebar if \(c/d_t > 0.345 d_t \)

 ![Section](image)

 ![Elevation](image)

 ![Strains](image)
Verify adequacy (detail) of the design for transfer of unbalanced moment at supports

- Unbalanced moment (M_c) is defined as the difference between the design moments on the opposite sides of a column support. This is the moment that is resisted by the support.
- The reinforcement associated with the transfer of unbalanced moment must be placed over a narrow band at the support (next slide).
- In most cases, this provision leads to a “detailing” requirement, as opposed to added rebar, since the reinforcement for slab design is in excess of that needed for transfer of unbalanced moment.

Transfer of unbalanced moment

![Diagram of slab with rebar strip](image)

Place the reinforcement within the narrow band identified as rebar strip

Punching Shear Design

![Diagram of punching shear](image)

Definition based on ACI 318

Check for Transfer of Prestressing

At stressing:

- Tendon has its maximum force;
- Concrete is at its weakest strength; and
- Live load to counteract prestressing is absent
STEP 9
Check for Transfer of Prestressing

- Add rebar where “representative” (hypothetical) tension stresses exceed the allowable threshold.
- Do not exceed “representative” hypothetical compressive stresses. Wait until concrete gains adequate strength.

Load combination
- \(U = 1.00 \times \text{Selfweight} + 1.15 \times \text{PT} \)

Allowable stresses
- Tension \(3 \sqrt{f_{ci}} \)
- Compression \(0.60 f_{ci} \)
- If tension exceeds, add rebar in tensile zone to resist \(N \) \(\Rightarrow \) \(\frac{A_s}{N} = \frac{N}{0.5 \times f_y} \)
- If compression exceeds, wait until concrete gains adequate strength.

STEP 10
Detailing

- Position of rebar

Thank you for listening

QUESTIONS?

www.adaptsoft.com
bijan@PT-structures.com